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a b s t r a c t

Miniaturized grippers that possess an untethered structure are suitable for a wide range of tasks, ranging
from micromanipulation and microassembly to minimally invasive surgical interventions. In order to
robustly perform such tasks, it is critical to properly estimate their overall configuration. Previous studies
on tracking and control of miniaturized agents estimated mainly their 2D pixel position, mostly using
cameras and optical images as a feedback modality. This paper presents a novel solution to the problem
of estimating and tracking the 3D position, orientation and configuration of the tips of submillimeter
grippers from marker-less visual observations. We consider this as an optimization problem, which is
solved using a variant of the Particle Swarm Optimization algorithm. The proposed approach has been
implemented in a Graphics Processing Unit (GPU) which allows a user to track the submillimeter agents
online. The proposed approach has been evaluated on several image sequences obtained from a camera
and on B-mode ultrasound images obtained from an ultrasound probe. The sequences show the grippers
moving, rotating, opening/closing and grasping biological material. Qualitative results obtained using
both hydrogel (soft) andmetallic (hard) gripperswith different shapes and sizes ranging from750microns
to 4 mm (tip to tip), demonstrate the capability of the proposed method to track the agent in all the video
sequences. Quantitative results obtained byprocessing synthetic data reveal a tracking position error of 25
± 7µmand orientation error of 1.7± 1.3 degrees.We believe that the proposed technique can be applied
to different stimuli responsive miniaturized agents, allowing the user to estimate the full configuration
of complex agents from visual marker-less observations.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Untethered miniaturized agents offer the possibility to replace
tethered medical devices such as endoscopes and probes with
smaller, maneuverable, and reconfigurable structures. Due to their
reduced size, magnetically-steered miniaturized agents have the
potential to perform high-resolution in-situ and in-vivomanipula-
tions in previously inaccessible body sites.

Many traditional miniaturized agents however have no shape-
changing capabilities, which results in limited dexterity that re-
stricts the complexity of achievable tasks [1–3]. In fact, besides
the reduced size, miniaturized agents should have the capabil-
ity to perform at least simple manipulation tasks in cluttered,
confined and constrained environments. Miniaturized agents with
grasping capabilities provide significant advantages in performing
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complex tasks like precise micro-assembly, minimally invasive
surgery, cell manipulation, and lab-on-a-chip applications [4–6].
They can be fabricated in sizes that are compatible with the major
vascular conduits, and can be used to safely grasp, manipulate
and transport biological material [7,8]. Self-folding miniaturized
grippers can be composed of materials (e.g., hydrogels), which
allow them to mimic soft biological systems as a consequence of
changes in materials properties (e.g., swelling) without any com-
plex feedback sensors and tethers. This feature offers the ability
for smart behaviors such as autonomous responses in specific
environments. For example, self-folding miniaturized grippers are
able to swell and shrink significantly in response to a variety of
stimuli like temperature, light, or chemical reactions [9–15]. Self-
folding miniaturized agents can be used to access hard-to-reach
areas within the human’s body (e.g., gastrointestinal, urinogenital
or cardiovascular conduits) and perform less invasive diagnostic,
therapeutic and surgical interventions. In order to precisely move
and control such agents, it is of utmost importance to properly
detect and track their pose.
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(a) Original video sequence.

(b) Output of the proposed tracking algorithm.

Fig. 1. (a) A miniaturized hydrogel gripper is folding in order to grasp biological
material (namely yolk from an egg) on porcine tissue (cropped regions from the
original 1024 × 1024 images, best viewed in color). (b) The configuration of the
gripper (green) is estimated by the proposed tracking algorithm and superimposed
on the original video sequence.

Themajority of prior research estimated the 2Dpixel position of
the miniaturized agents. Image processing techniques and a stan-
dard Kalman filter were used to track the 2D pose of miniaturized
hydrogel grippers in [16,17]. A particle filter was used to track the
2D positions of self-propelledmicro-tubes in [18]. Random Sample
Consensus (RANSAC) was used in combination with data filtering
and optimal convergence process in order to detect and track
micro-grippers and micro-objects in micro-assembly tasks [19].
Finally, Bollavaram et al. presented an accurate and robust method
to detect the 2D positions and orientations of micro-scale objects
in low contrast bright field microscopy [20]. The main reason
for estimating the 2D pixel positions of miniaturized agents is
related to significant technical difficulties in tracking the agents
in 3D. Prior research on 3D tracking used multi-cameras [21,22]
and depth-from-focus techniques to estimate the 3D position of
the miniaturized agents [23,24]. Recently, a template-based hy-
brid visual tracking algorithm was presented to estimate the 3D
posture of micro-objects in a scanning electron microscope [25].
The algorithm used luminance information to estimate the object
displacement on the x-yplane and its orientation around the z-axis.
Defocus informationwas used to estimate the object depth. Digital
holography was used to track the 3D position of a magnetic micro-
robot (Neodymium–Iron–Boron (NdFeB) cylindrical magnet) [26].
Most of the aforementioned studies focused mainly on estimating
the position of the agents. However, for miniaturized grippers it
would be useful to estimate also the configuration of the tips of
their fingers. This would allow a user to determine if the object
is firmly grasped and possibly manipulate individual parts of the
gripper [27]. Moreover, the knowledge of the overall configuration
of the miniaturized grippers would allow a user to utilize grasp
planners in order to better perform a grasping task [28].

In this paper, we propose a GPU-accelerated model-based ap-
proach to track online the full pose and articulations of submil-
limeter grippers (Fig. 1). We formulate the tracking problem as
an optimization routine that minimizes the discrepancy between
the hypothesized 3D gripper model instances and its actual visual
observations. Observations come from images captured from a
sensor (microscope, ultrasound (US) probe, etc.). The optimization
is performed with a variant of the Particle Swarm Optimization

(PSO) algorithm, which exploits the structure and the stimuli re-
sponsive mechanisms of the submillimeter gripper. PSO has been
successfully used to solve nonlinear, non-differentiable, multi-
modal optimization problems. Different from other population-
based search approaches like genetic algorithms, PSO can compute
a solution in a more computationally efficient way [29]. Several
tracking problems used PSO [30–33]. However, the possibility to
use it in order to track submillimeter agents has not yet been
demonstrated. Tamadazte et al. used the virtual visual servoing
approach to estimate the 3D pose of no shape-changing micro-
objects from a single view of the scene [34]. Different from [34], the
proposed approach is capable of estimating online the 3D pose and
articulations of shape-changing agents, as they change their shape.
Experimental tests on challenging real data are used to validate the
efficacy of our method. We evaluate the proposed tracker using
thermally responsive miniaturized grippers composed of both soft
(hydrogel) and hard (metallic) materials, highlighting applicability
for agents across material classes.

To the best of our knowledge, there is no work which tries to
estimate online the overall configuration of miniaturized grippers,
i.e., 3D pose and tips’ configuration. Recently, we developed an
offline model-based tracker for soft grippers using RGB camera
images [35]. Compared to [35], the significant contributions of
this study are: (1) An improved and more extended theory; (2)
a new implementation on a GPU API which allows the tracker to
run online (∼27 Hz vs. ∼0.3 Hz without GPU); (3) a quantitative
experimental validation performed on synthetic data; (4) an ex-
tended experimental validationperformedon real video sequences
acquired from both a camera and a US probe, including challenging
dynamic backgrounds; (5) an extended experimental validation
performed using different types of miniaturized grippers.

The rest of the paper is organized as follows. Section 2 describes
the main steps of the model-based tracker. Section 3 introduces
the Particle Swarm Optimization algorithm and shows how we
tailored it in order to properly track the miniaturized agents.
Section 4 gives the reader some insights on the implementation
of the proposed tracker using the OpenGL Shading Language. In
Section 5 the proposed tracker is evaluated on synthetic data and
challenging real video sequences acquired from both a camera
and an US probe. Finally, in Section 6, we summarize the main
contributions of the paper, and we discuss possible avenues for
future research.

2. Model-based tracking

In this section, we introduce the proposedmodel-based tracker
forminiaturized grippers (Fig. 2). In the initial phase, the algorithm
detects the agent from color images. The output of this phase
is a binary pixel mask where the pixel representing the gripper
are set to one. Then, such mask is fed to a PSO algorithm along
with a 3D model of the gripper. The algorithm uses the 3D model
to generate several configurations of the miniaturize agent, and
compares them with the input mask using a cost function. The
configuration which minimizes the discrepancy with the input
data is the solution to the proposed tracking problem. In what
follows, we describe the steps used in the initial detection phase
as well as the cost function that the PSO algorithm uses.

2.1. Color segmentation

Color segmentation is performed in order to isolate the minia-
turized agent. We assume that the input to the proposed method
is a color image. In the proposed work, we detect the miniatur-
ized gripper by selecting a particular color space and employ-
ing bounds on the coordinates of the selected space. We choose
these bounds empirically, i.e., by examining the distribution of
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Fig. 2. Illustration of the proposed model-based tracker. From left to right, an input image (e.g., taken from a microscope in Red–Green–Blue (RGB) colorspace) is processed
by the proposed algorithm. Color segmentation is performed in order to detect the miniaturized gripper. The 3Dmodel of the gripper and the segmented region of the image
are used to recover the gripper configuration using the particle swarm optimization algorithm. The hypothetical poses of the gripper are generated by means of computer
graphic rendering on GPU. In order to speed up the process, several hypothetical configurations of the gripper are generated and evaluated at once. The hypothesis which
minimizes the discrepancy with the observation is the solution to the tracking problem.

Fig. 3. The 3D model (white) of a miniaturized hydrogel gripper is composed of a
set of 46 appropriately assembled triangles. The model consists of six fingers. Each
finger is modeled as a planar kinematic chain made by 4 joints (one-dimensional
hinges) and 4 links.

colors in a preselected set of images. Morphological filtering and
morphological opening are used in order to properly segment the
image. The resulting image represents the observation O related
to our problem. The observation O is a binary pixel mask where
the pixel representing the gripper are set to one. Further details
about the color segmentation are reported in Section 5, where the
proposed technique is evaluated on video sequences acquired by
a camera and a US probe. In order to speed up the segmentation
procedure and reduce erroneous estimations, temporal continuity
is exploited to track the grippers in a sequence of frames. At each
frame, the segmentation procedure uses the estimated position of
the tracked gripper from the previous frame (cf. Section 3).

2.2. Cost function

The proposed method assumes the knowledge of the 3D model
of the agent to be tracked. We empirically generate the 3D model
starting from the real measurements of the miniaturized gripper
in order to better approximate its shape. We represent the grip-
per’s pose using 3 parameters for its position, 3 parameters for
its orientation and 1 parameter for each finger. For example, the
adopted 3D model for miniaturized six-fingers hydrogel grippers
is represented using a vector of 12 parameters (Fig. 3). For the
orientation, we consider the Euler representation. In the proposed
work, we assume that the joints which belong to the same finger

bend in the same way, i.e., they have the same value. This is a
reasonable assumption since its joints are usually made by the
same swelling material and subject to the same stimulus.

The tracking problem consists of estimating the gripper model
parameters that minimize the discrepancy among the hypotheses
and the actual observations. For miniaturized six-finger hydro-
gel grippers, the model parameters consist in the 12 parameters
that represent its pose. An appropriate objective function is thus
formulated and a variant of PSO is employed to search for the
optimal configuration. The result of this optimization process is
the output of the method for the given frame. The observation
model O that feeds the rest of the process consists of the 2D
pixels of the segmented color image obtained in Section 2.1. Having
a parametric 3D model of a miniaturized gripper, the goal is to
estimate the model parameters that are most compatible to the
visual observationO. LetH be a pose hypothesis of the gripper, and
let C be the mathematical model of the sensor. The miniaturized
agent P , as imaged by sensor C, is obtained by means of computer
graphic rendering, P = f (H, C). For video sequences acquired by
a camera, C contains the intrinsic parameters of the sensor and
f (H, C) is the projection of the 3D model of the gripper defined by
H on the image plane of the camera.

A function E(H,O, C) computes the distance measure between
the hypothesis H and the observation O,

E(H,O, C) = λDD(O,H, C)+ λKK (H)+ λSS(H), (1)

where λD, λK , λS ∈ R+ are gain factors and the function D(·) is
defined as [31],

D(O,H, C) =
(
1−

2
∑

(O & P)∑
(O & P)+

∑
(O | P)

)
,

being & the logical AND operator, while | is the logical OR operator.
D(·) measures the discrepancies between the pixels of the hypo-
thetical model and the observation. The sums are computed over
the pixels of the observation O and of the image P generated by
the hypothesis H.

In (1), K (·) adds a penalty to kinematically implausible gripper
configurations and to possible collisions among the fingers of the
model. Due to the simplified kinematic structure of the gripper,
which considers the fingers as planar robots and assumes that
the joints of the same finger have the same value, we estimate
possible collisions by using the value of the joints of adjacent
fingers. This procedure is faster than computing fast triangle–
triangle intersections [36–38]. In order to improve the tracking
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performance in presence of poor color segmentation and/or oc-
clusions, in (1) we add the term S(·) which exploits the stimuli
responsive mechanisms of the miniaturized grippers. Since the
grippers used in this work respond to temperature variations, in
S(·) we use the information of the temperature of the environment
to penalize infeasible configurations of the miniaturized gripper.
In particular, we consider two reference threshold values (and
tolerances) for the joints of the model. One value is used to rep-
resent the configuration of the gripper when it is unfolded. The
other value is used to represent the configuration of the gripper
when it is folded. Moreover, we associate temperature values to
such reference configurations. The joints values for the reference
configurations depends on the type (material, shape) of the grip-
per. For miniaturized hydrogel grippers, possible values for the
unfolded and folded configuration are about 0 and 60 degrees.
Given the information of the temperature of the environment and
a gripper pose hypothesis H, S(·) detects the joint values of H
which represent infeasible configurations. Then, S(·) computes the
Mean Absolute Error (MAE) of the such values with respect to the
reference ones. A similar approach can be used for grippers which
respond to light, or chemical reactions.

3. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population-based,
stochastic algorithm that optimizes an objective function through
the evolution of the particles of a population [39]. The particles lie
in the parameter space of the objective function to be optimized
and represent potential solutions to the problem. Each particle
searches for a better solution through the interaction with other
particles. PSO allows to effectively handle nonlinear optimization
problems and it has proven to be implemented with ease and
scalability in order to achieve appropriate results in a faster and
cheaper way.

In PSO, the particles evolve in runs, which are called genera-
tions, according to a policy which emulates social interaction. Let
N ∈ N+ be the dimension of the population and let G ∈ N+ be
the number of generations, every particle i ∈ {1, . . . ,N} at each
generation k ∈ {1, . . . ,G} stores its current configuration in a
vector xki and its current velocity in a vector vki . Vector x̂i stores the
configuration at which each particle achieved, up to the current
generation k, the best value of the objective function. The swarm
as a whole stores in vector ĝ the best configuration encountered
across all the particles of the swarm. ĝ is broadcasted to the entire
swarm such that every particle is aware of the global optimum. The
basic velocity and configuration update rules are,

vk+1i = w vki + c1 r1 (x̂i − xki )+ c2 r2 (ĝ− xki ), (2)

xk+1i = xki + vk+1i , (3)

where w is the inertia weight, c1, c2 ∈ R+ are coefficients, and
r1, r2 are random samples in a uniform distribution in the range
[0, . . . , 1]. The particles are usually initialized at random config-
urations and zero velocities. The dimensions of the multidimen-
sional parameter space are bounded in some range. If during the
configuration update ((2) and (3)) the particle moves to a point
outside such range, we force that particle to move to the closest
point inside the bounds. In this specific work, PSO was used to
optimize the objective function reported in (1). In order to find the
optimum, PSO operates in a 12-dimensional space. For every single
frame, we run the PSO algorithm in order to find the configuration
of the miniaturized gripper.

PSO, like other population-based optimization algorithms and
evolutionary algorithms, relies on the initial population consisting
of potential solutions. In this paper, we initialize the swarm by

Algorithm 1 Particle Swarm Optimization: for each generation
k ∈ {1, ...,G}, the configuration xki of each particle i ∈ {1, ...,N}
is evaluated using the cost function reported in (1) xki represents
the gripper pose hypothesis H. If xki is better than the particle’s
best configuration x̂i, then xki becomes the new particle’s best
configuration. The same evaluation is performed for the global best
configuration ĝ. Finally, the configuration xk+1i and velocity vk+1i
of each particle are updated accordingly. When we initialize the
particles, we exploit temporal continuity among frames, i.e., the
solution obtained at frame ft is used to initialize the population
for the optimization problem at frame ft+1. Finally, temperature
information is used to perform a biased initialization of the joints
values.
1: initialize_particles()
2:
3: for k← 1, G do
4: for i← 1, N do
5: ifmod(k, kr ) == 0 then
6: partial_randomization(xki )
7: end if
8: if E(xki ,O, C) < E(x̂i,O, C) then
9: x̂i← xki

10: end if
11: if E(x̂i,O, C) < E(ĝ,O, C) then
12: ĝ← x̂i
13: end if
14: end for
15:
16: for i← 1, N do
17: c1,i← C

(N−1)2
(ranki − N)2

18: c2,i← C − c1,i
19: vk+1i ← w vki + c1,i r1 (x̂i − xki )+ c2,i r2 (ĝ− xki )
20: xk+1i ← xki + vk+1i
21: end for
22: end for

exploit temporal continuity among frames. The solution obtained
at frame ft is used to generate the population for the optimization
problem at frame ft+1. In particular, among the N particles of the
swarm, one particle is initialized with same parameters which
define the best particle at the previous time frame. The remaining
particles are generated by perturbing the previous solution with
uniform pseudo-random numbers within a given range. For what
concern the initialization of the joints values, we performed a
biased initialization by using the temperature information and a
simplified version of the hysteresis information presented in [16].
For example, if the temperature is increasing and it is in the range
where the gripper will be more likely start folding, we initialize
75% of the swarm by increasing the joints values of a random
number within a given range. The opposite is applied when the
temperature decreases and it is in the range where the gripper will
be more likely to unfold. In the remaining cases, 50% of the swarm
is initialized with increasing joints values while the remaining 50%
is initialized with decreasing joints values.

Since PSO may suffer from premature convergence, we used
a modified version of this algorithm in order to overcome this
problem [40]. We applied a partial randomization of the popula-
tion by randomly perturbing one parameter of a subset of the
population. This procedure is applied every kr < G generations.
Moreover, in order to avoid occasionally inordinate divergence
which may prevent the algorithm to reach the best solution, we
used a coefficient adaptation technique. The extension modifies the
coefficients c1, c2 depending on how far is the current particle from



S. Scheggi et al. / Robotics and Autonomous Systems 103 (2018) 111–121 115

(a) (b)

Fig. 4. Themicroscopic camera datasets and the US datasets are generated using amagnetic system composed of iron-core electromagnets fixed in a frame around a reservoir
with the liquids. In order to fold/unfold the miniaturized grippers, a Peltier element is placed below the reservoir and used to regulate the temperature of the water wherein
the grippers are floating. The gripper is imaged using: (a) Amicroscopic camera positioned above the reservoir; and (b) a US probe. Magnetic forces are exerted on the gripper
to control its pose. The scale bar is 4 mm. Please refer to the accompanying video that shows the results of the tracking experiments.

the global best solution ĝ,

c1,i =
C

(N − 1)2
(ranki − N)2, c2,i = C − c1,i,

being C ∈ R+ a constant, while ranki is the rank of the ith particle’s
configuration. The adaptation technique allows particles in the
lower rank to move toward the global optimum, while particles
in a higher rank are close to the best solution and search around it.
Algorithm 1 describes the PSO algorithm.

The estimated state ĝ of the gripper at frame ft is used by
the color segmentation procedure (cf. Section 2.1) to determine
the visual observation O in the next video frame ft+1. Among
the detected pixels, the algorithm keeps the ones for which the
probability of belonging to the gripper p(Ot+1|Pt ) is above a certain
value. P is the generation of the miniaturized gripper P = f (ĝ, C),
being C the mathematical model of the sensor (cf. Section 2.2).

4. GPU implementation

The most demanding part of the algorithm is the generation of
the hypothesis H, and consequently the computation of the cost
function E(·) (1). A possible way to speed up this process is to
use a Graphics Processing Unit (GPU). GPU-accelerated computing
consists in using a GPU togetherwith a CPU to accelerate compute-
intensive portions of the application.

As reported in [31,41], we can take advantage of the GPU archi-
tecture by generating and processing multiple hypotheses simul-
taneously. In particular, four hypotheses are simultaneously gen-
erated using the OpenGL Shading Language. Different from [31,41],
the hypotheses are generated with a reduced size with respect to
the original image (usually their size is one fourth of the original
dimension). A geometry shader is used to assemble the 3D model
of the gripper from the values of its pose and joints. Such values
represent the configuration of a particle i at a generation k and are
stored in the vector xki , as described in Section 3. We generate the
hypotheses using multiple Framebuffer Objects (FBO). Then, we
use multiple Pixel Buffer Objects (PBO) to transfer the rendered
hypotheses from an FBO to the CPU in an asynchronous way.
The advantage of a PBO is that it allows to perform fast pixel
data transfer to and from a graphics card through Direct Memory
Access (DMA) without involving CPU cycles. Moreover PBO can
perform asynchronous DMA transfer. The CPU is not involved in

transferring the pixel data to/from a PBO, which is managed by
the GPU. Therefore, in order to properly take advantage of PBO,
the program should actually have some computations to perform
while it is waiting for the transfer to complete. In our case, in order
to speed up the tracking process, we interleave the data transfer
with: (1) PSO computations; (2) the evaluation of the cost function
E(·) on the CPU; (3) the generation of other hypotheses on the GPU.

The algorithm can be described as follows: During the initializa-
tion phase, the 3D model of the agent (number of fingers, number
of links, length of the links, etc.) is transferred to the GPU and
cached. Custom shaders (vertex, geometry and pixel) are designed
to properly assembly the 3D model and generate P based on the
imaging model of the sensor (cf. Section 2.2). During the tracking
process, at each generation of the PSO, particles are evaluated in
groups of four. Each particle represents a gripper pose hypoth-
esis Hi, i ∈ {1, . . . ,N}. The four hypothesis are contemporary
transferred to the GPU, and the related 3D models are properly
assembled and rendered on a particular FBO. When the next four
hypothesis are transferred to the GPU, the related 3D models are
rendered on a different FBO, while the previous FBO is transferred
to the CPU using a PBO. Since the pixel data transfer is a time con-
suming operationwhich does not involve CPU cycles,we interleave
the pixel data transfer with CPU computations, among which the
evaluation of K (·) and S(·) for the actual group of particles, and D(·)
for the previous particles (cf. Section 2.2). The use of theGPUallows
the proposed algorithm to run online (∼27 Hz). Without GPU, the
algorithm runs at an average frame rate of∼0.3 Hz [35].

5. Experimental results

In this section, representative results of the proposed tracker
are provided. We first evaluate the proposed technique on syn-
thetic data with ground truth information. This is a common ap-
proach in the relevant literature because ground truth data for
real-world image sequences are hard to obtain. Then, we test and
evaluate the tracking method in a series of image sequences ac-
quired by a microscopic camera, demonstrating challenging track-
ing scenarios (Fig. 4(a)). Finally, the proposedmodel-based tracker
is evaluated in video sequences acquired by a US probe 18L6HD
(Siemens ACUSON S2000, Siemens Healthcare, Mountain View,
USA) (Fig. 4(b)). All the video sequences contain frames in which
the miniaturized gripper is self-occluded. Also, the US sequences
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Fig. 5. Two-finger (a) and six-finger (c) metallic grippers. We model each finger
of the two-finger gripper as a planar kinematic chain made by 2 joints (one-
dimensional hinges) and 2 links (b). For the six-finger gripper, each finger is
represented as a planar kinematic chain made by 3 joints and 3 links (d).

present significantly more challenging dynamic backgrounds. The
video sequences are processed off-line on an Intel Xeon laptop
computer running MS Windows at 3.5 GHz, 16 GBs RAM and an
Nvidia Quadro K2200 graphic card.

Three different miniaturized grippers are used: (1) Hydrogel
grippers having 6 fingers and tip-to-tip length of 4 mm [15];
(2) metallic grippers with 6 fingers and tip-to-tip distance of
900 µm [13]; (3) metallic grippers with 2 fingers and tip-to-tip
length of 750 µm [14]. For all the three different types of grippers,
we generate 3D models that match the real shape and dimension
of the agents (Figs. 3 and 5).

The miniaturized hydrogel grippers are composed of a stiff SU-
8 and thermally responsive pNIPAM-AAc segmented bilayer. They
open and close reversibly due to a lower critical solution temper-
ature (LCST) phase transition and associated swelling or shrinkage
in the pNIPAM-AAc layer in response to temperature changes.
The range of temperatures used to fold/unfold such grippers is
between 24 ◦C and 27 ◦C [16]. The submillimeter metallic grip-
pers are composed of pre-stressed chromium/gold self-actuating
hinges and amagnetic nickel layer to enable remotemanipulation.
The phalanges of the gripper consist of a magnetic layer of nickel
(8.5 µm) sandwiched between two 0.5 µm layers of gold. At room
temperature, the trigger polymer of the gripper is stiff enough to
prevent the phalanges from folding. As the temperature rises to
or above the physiological temperature (37 ◦C), the trigger softens
and allows the folding of the submillimeter agent [13].

5.1. Synthetic dataset

Synthetic data is used for the quantitative evaluation of the pro-
posed approach. Hydrogel grippers are simulated in the proposed
evaluation. Several sequences are considered, showing the grip-
pers moving, rotating about all their axis and folding/unfolding.
The sequences comprise frames where the agent is self-occluded
and/or it moves outside the field of view of the simulated sensor.
Computer graphic rendering is used to generate the required ob-
servation O for each simulated configuration of the gripper.

In the first experiment, we evaluate the tracking error depend-
ing on the amount of particles and generations used. In order to as-
sess the tracking accuracy, we compute the tracking error by using
the metric defined in [42]. Fig. 6(a) reports the average tracking
error computed on 5614 frames. In particular, about 70% of the
synthetic data presents occlusions which cover up to 80% of the
shape of the miniaturized gripper. From Fig. 6(a), we can observe
that employing more than 32 particles and more than 25 gener-
ations does not significantly improve the accuracy of the tracker.
With such configuration, we obtain a position error of 25± 7 µm,
orientation error of 1.7± 1.3 degrees, and joints’ estimation error
of 1.4± 0.95 degrees. Occlusions,motions outside the field of view,
and big out-of-plane rotations decrease the accuracy of the tracker.
This is due to the fact that the gripper is less visible. In particular,
we experience a maximum position error of 72.3 µm, maximum
orientation error of 14.4, 18.7, and 10.2 degrees about the x-, y-,

Fig. 6. Synthetic evaluation. (a) The proposed tracker is evaluated depending on the
amount of particles and generations used. In order to evaluate the tracking accuracy,
we measure the distance between the corresponding phalanx endpoints in the
ground truth data and in the estimated configuration of the gripper. (b) We report
the error of the tracker in estimating the joint values of the gripper. The ground truth
joint values are corruptedwithGaussian noise having increasing standard deviation
σ .

z-axis, respectively, and maximum joints’ estimation error of 12.3
degrees. These results are obtained when the miniaturized gripper
moves almost completely outside the field of view of the sensor.

In the remainder of the experiments, we use N = 32 particles,
G = 25 generations, w = 0.4, and C = 1, according to [43,44]. We
performed the partial randomization every kr = 8 generations.
Concerning the cost function, λD = 2, λK = 0.15, and λS = 1.
The tracker runs at an average frame rate of 27 Hz. In the proposed
tracker, we model the miniaturized grippers assuming that the
joints which belong to the same finger bend in the same way,
i.e., they have the same value (cf. Section 2.2). In the second ex-
periment,we evaluate the tracker in situationswhere the proposed
assumption does not hold. In particular, we corrupt the joint values
of the ground truth data with additive Gaussian noise, having zero
mean and increasing standard deviation σ ∈ {0, 0.5, 1, 1.5, 2}
degrees. Fig. 6(a) reports the error of the tracker in estimating the
joint values of the gripper when they are corrupted with additive
noise.

5.2. Microscopic camera dataset

Themicroscopic camera dataset is composed of seven video se-
quences. Four of them report the motion of miniaturized hydrogel
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Fig. 7. Characteristic snapshots from the tracking experiment on the first image sequence (best viewed in color). Theminiaturizedhydrogel grippermoves in the environment,
folds performing a grasping task, and unfolds simulating a release task. For each snapshot, the estimated configuration of the gripper is displayed in green. Temperatures (T)
are shown on the bottom-right corner of each snapshot. Please refer to the accompanying video that shows the results of the tracking experiments.

(a) Original video sequence.

(b) Outcome of the proposed tracking algorithm.

Fig. 8. Characteristic snapshots from the tracking experiment on the third image sequence (best viewed in color). The sequence shows a miniaturized hydrogel gripper
rotating about its axes. In this sequence, the camera is placed further away from the agent. As a consequence, the dimension of the agent in the image plane is smaller and
the background is more challenging. For each snapshot, the estimated configuration of the gripper is displayed in green. Temperatures (T) are shown on the bottom-right
corner of each snapshot. Please refer to the accompanying video that shows the results of the tracking experiments.

grippers during manipulation and transportation tasks. Two video
sequences depict the motion of submillimeter six-finger metallic
grippers. The remaining video sequence shows the motion of a
submillimeter two-finger metallic gripper; please refer to the ac-
companying video that shows the results of the tracking experiments.

The video sequences are generated by magnetically control-
ling the agents in a setup composed of a fluid reservoir and six
orthogonally oriented electromagnets (Fig. 4(a)) [18]. All of the
videos were recorded using a Blackfly 1.4MP Color GigE PoE (Point
Grey Research Inc., Richmond, Canada) camera mounted on a Mi-
tutoyo FS70 microscope unit (Mitutoyo, Kawasaki, Japan) using a
Mitutoyo M Plan Apo 2 / 0.055 Objective. The video sequences
consist of 1024 × 1024 RGB color images. In order to detect the
miniaturized agents, we perform the color segmentation steps
described in Section 2.1. In particular, we convert the images to the
Hue-Saturation-Value (HSV) color space andwe employ bounds on
the coordinates of the Saturation and Value spaces.

The first and second videos consist of 4148 and 3552 frames,
respectively. The video sequences report the motion of a minia-
turized hydrogel gripper in testbed scenarios, where the agent is
clearly visible and easily detected against the background. During
the experiment, the agent rotates and moves at various directions
and speeds. At some point in time, we increase the temperature of
the Petri dish using a Peltier element (Fig. 4(a)). The miniaturized
gripper starts folding while it moves in the scene. Finally, the
experiment concludes with the micro-sized agent that unfolds (as
we cool down the temperature) while it continues tomove (Fig. 7).
The configurations of the gripper estimated by the tracker are
consistent throughout the whole sequences.

The third video consists of 7960 frames. With respect to the
previous sequence, in this video the camera is placed further away
from the agent. Thus the dimension of the agent in the image plane
is smaller and the background is more challenging (Fig. 8(a)). In
order to evaluate the tracker in a more challenging scenario, we
process one frame out of every five frames. When the experiment
starts, the agent is open and does not move. Then, it starts moving
upward. Finally, the gripper starts moving and rotating about the
three axis. Also in this case, the tracker is able to correctly estimate
the configuration of the agent (Fig. 8(b)).

The fourth video consists of 2558 frames. A miniaturized grip-
per is used to grasp biological material namely yolk from an
egg. We process one frame out of every two frames. When the
experiment starts, the agent is stationary and open. Later, the
miniaturized gripper starts rotating and moving toward the egg
yolk. Then, the agent moves almost completely outside the field
of view of the camera, reaches the target and starts to fold (Fig. 9).
Throughout the whole sequence, the configuration of the gripper
is correctly identified.

The next two video sequences show a submillimeter six-finger
metallic gripper moving, rotating, and folding in order to simulate
a grasping task. The video sequences consist of 1936 and 1320
frames, respectively. In the first one, the submillimeter gripper
is steady. Then, it starts folding as the temperature is increased
using a Peltier element (Fig. 10). In the second video sequence, the
gripper is not completely folded. When the experiment starts, the
agent startsmoving and rotating at high speed in the environment.
In this video the camera is placed further away from the agent.
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Fig. 9. Snapshots of the miniaturized hydrogel gripper moving on porcine muscle tissue and picking egg yolk (best viewed in color). Although the agent moves almost
completely outside the field of view of the camera, the proposed algorithm is still able to track it. For each snapshot, the estimated configuration of the hydrogel gripper
is displayed in green. Temperatures (T) are shown on the bottom-right corner of each snapshot. Please refer to the accompanying video that shows the results of the tracking
experiments.

Fig. 10. Characteristic snapshots from the tracking experiment on the fifth image sequence (best viewed in color). The sequence shows the submillimeter six-finger metallic
gripper folding. From left to right: Although the initial conditions used in the particle swarmoptimization do not coincidewith the actual configuration of themetallic gripper,
the tracker is able to converge to the correct configuration of the gripper. For each snapshot, the estimated configuration of the gripper is displayed in green. Temperatures
(T) are shown on the bottom-right corner of each snapshot. Please refer to the accompanying video that shows the results of the tracking experiments.

(a) Video sequence processed by the proposed algorithm.

(b) Close-up of the tracked submillimeter metallic gripper.

Fig. 11. Characteristic snapshots from the tracking experiment on the sixth image sequence (best viewed in color). The sequence shows the submillimeter six-fingermetallic
gripper moving and rotating in the environment at high speed. The gripper is not completely folded. In this sequence the camera is placed further away from the agent.
Due to the small dimension of the agent, we consider this sequence challenging for the tracker. From left to right: Although the initial conditions used in the particle swarm
optimization do not coincide with the actual configuration of the miniaturized gripper, the tracker is able to converge to the correct configuration of the gripper. For each
snapshot, the estimated configuration of the gripper is displayed in green. Temperatures (T) are shown on the bottom-right corner of each snapshot. Please refer to the
accompanying video that shows the results of the tracking experiments.

Fig. 12. Characteristic snapshots from the tracking experiment on the seventh image sequence (best viewed in color). The sequence shows the submillimeter two-finger
metallic gripper moving and rotating in the environment. For each snapshot, the estimated configuration of the gripper is displayed in green. Temperatures (T) are shown
on the bottom-right corner of each snapshot. Please refer to the accompanying video that shows the results of the tracking experiments.
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(a) Original video sequence.

(b) Close-up of the tracked miniaturized hydrogel gripper.

Fig. 13. Characteristic snapshots from the tracking experiment on the first image sequence of the ultrasound dataset (best viewed in color). The agent rotates and moves in
the workspace. The proposed algorithm is able to track theminiaturized hydrogel gripper even if the agent is not always completely visible. For each snapshot, the estimated
configuration of the gripper is displayed in green. Temperatures (T) are shown on the bottom-right corner of each snapshot. Please refer to the accompanying video that shows
the results of the tracking experiments.

Fig. 14. Characteristic snapshots from the tracking experiment on the second image sequence of the ultrasound dataset (best viewed in color). The miniaturized hydrogel
gripper rotates, moves in the workspace and folds performing a grasping task. For each snapshot, the estimated configuration of the gripper is displayed in green.
Temperatures (T) are shown on the bottom-right corner of each snapshot. Please refer to the accompanying video that shows the results of the tracking experiments.

Due to the small dimension of the agent, we consider this sequence
challenging for the tracker Fig. 11(a). However, the proposed algo-
rithm is able to correctly track the submillimeter agent Fig. 11(b).
The last video sequence consists of 510 frames and reports the
motion of a miniaturized two-finger gripper. Also in this case, the
proposed tracker correctly identifies the configuration of the agent
(Fig. 12).

5.3. Ultrasound dataset

Four video sequences have been considered in order to vali-
date the proposed algorithm in more clinically relevant scenarios;
please refer to the accompanying video that shows the results of
the tracking experiments. In the video sequences, the miniatur-
ized hydrogel gripper is magnetically controlled using the mag-
netic setup depicted in Fig. 4(b). The images are acquired using
an ultrasound probe 18L6HD (Siemens ACUSON S2000, Siemens
Healthcare, Mountain View, USA) operating with a frequency of
16 MHz with an in-plane resolution of approximately 0.09 mm
per pixel. The video sequences consist of 1024 × 662 RGB color
images (Fig. 2). In order to detect the miniaturized agent, we
apply a grayscale conversion to the images using the luminance
information. Then, we employ bounds on the selected color space.
Finally, we apply the steps described in Section 2.1.

The first video consists of 544 frames. When the experiment
starts, the agent is stationary and open. Later, the miniatur-
ized gripper starts rotating and moving at various directions and
speeds. Although the agent is partially visible during its motion
(Fig. 13(a)), the tracker can still track its pose using the temperature
information (Fig. 13(b)).

The second video consists of 2033 frames. With respect to the
previous sequence, in this sequence the miniaturized gripper folds

andmoves simulating a transportation task. When the experiment
starts, the agent is open and does not move. Then, it starts folding.
Finally, theminiaturized gripper startsmoving downward (Fig. 14).
Also in this case, the tracker is able to correctly estimates the
configuration of the agent.

The third and fourth video sequences are generated by combin-
ing the first two video sequences with two dynamic backgrounds
(See Figs. 15 and 16). The dynamic backgrounds are obtained by
scanning the abdomen of a human volunteer. With respect to
the first and second video sequences, the tracker is less accurate.
This is due to the presence of the dynamic background and occlu-
sions. However, the tracker is able to successfully detect the agent
through the whole sequences.

The proposed method mainly relies on the observation O and
on the term S(·) to properly estimate the configuration of the agent.
Thus, possible limitations might arise when the gripper is severely
occluded or erroneously detected in several frames. In crowded
manipulation workspaces where multiple agents and object can
be tracked, these limitations can be leveraged by using a tracker
which takes into account all agents simultaneously, instead of
considering each agent independently [45].

6. Conclusions and future work

In this paper, we present a novel GPU-accelerated model-based
method for efficient tracking of submillimeter grippers. The track-
ing problem consists of estimating the gripper model parameters
that minimize the discrepancy between the gripper hypotheses
and the actual observations.We use an appropriate objective func-
tion andwe employ a variant of Particle SwarmOptimization (PSO)
which exploits the stimuli responsive mechanism of the minia-
turized grippers. GPU-accelerated computing is used to properly
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Fig. 15. Characteristic snapshots from the tracking experiment on the third image sequence of the ultrasound dataset (best viewed in color). The sequence is obtained
by combining the first sequence of the ultrasound dataset with a dynamic background. The sequence shows a submillimeter hydrogel gripper moving and rotating in the
environment. The gripper is unfolded. For each snapshot, the estimated configuration of the gripper is displayed in green. Temperatures (T) are shown on the bottom-right
corner of each snapshot. Please refer to the accompanying video that shows the results of the tracking experiments.

Fig. 16. Characteristic snapshots from the tracking experiment on the fourth image sequence of the ultrasound dataset (best viewed in color). The sequence is obtained
by combining the second sequence of the ultrasound dataset with a dynamic background. A submillimeter hydrogel gripper rotates, moves in the environment and folds
performing a grasping task. For each snapshot, the estimated configuration of the gripper is displayed in green. Temperatures (T) are shown on the bottom-right corner of
each snapshot. Please refer to the accompanying video that shows the results of the tracking experiments.

track and detect the configuration of the micro-sized agent online
(∼27 Hz).

Extensive experimental results demonstrate the validity of the
proposedmethod. Themethod is applicable to both hydrogel (soft)
and metallic (hard) grippers with different shapes and tip-to-tip
sizes ranging from 4mm to 750 microns A quantitative evaluation
of the proposed tracker using synthetic data reveals a position error
of 25±7µm, orientation error of 1.7± 1.3 degrees, and estimation
error of the joints’ values of 1.4 ± 0.95 degrees. Several datasets,
acquired using a microscopic camera and an ultrasound probe,
demonstrate the capability of the proposed method to track sub-
millimeter grippers in challenging scenarios, including dynamic
backgrounds. More than 20000 frames are used to validate the
proposed method. With respect to existing methods, the proposed
algorithm is the first one which tries to estimate the full 3D pose
and the articulations of untethered submillimeter grippers from
marker-less visual information. This will allow a user to fully
control themotion of the agent by exploiting the information of its
3D pose, i.e., more tasks can be achieved. Moreover, manipulation
tasks can be performed in a more accurate way by using the
knowledge of the pose and articulations of the gripper. We believe
that the proposed technique can be applied to different stimuli
responsive miniaturized agents, allowing the user to estimate the
full configuration of complex agents from visual marker-less ob-
servations.

In future work, we will consider the possibility to extend the
proposed approach to multiple gripping agents. Moreover, we will
evaluate the proposed tracker inmore clinically relevant scenarios,
e.g., in fluidic micro-channels with time-varying flow rates to
enable eventual applicability in-vivo.
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